Bien que la pratique du coaching ait fait l’objet d’une attention soutenue dans la littérature, aucun cadre théorique n’existe pour guider le langage des conversations visant à améliorer la performance des dirigeants. Cet article répond à cette omission. À la suite de Richard Weaver, il ressuscite une ancienne distinction entre langage noble et ignoble et combine cette distinction avec une hiérarchie linguistique. Le langage noble culmine et donne voix à une performance exécutive optimale ; en tant que tel, c’est le langage idéal du coaching.

- 00:03:47
Robotic warehouses have transformed logistics, prioritizing speed and efficiency. However, traditional static priority systems often leave low-priority customers facing excessive delays, raising concerns about fairness. This research, based on Invia, a robotic warehouse company, proposes a dynamic priority allocation model to balance efficiency and fairness. By adjusting order priorities over time, this approach ensures that both high-priority and long-waiting low-priority orders receive timely fulfillment. Through stochastic modeling and simulations, we demonstrate that dynamic prioritization reduces delays compared to static and first-come, first-served (FCFS) models. Case studies in e-commerce and healthcare logistics illustrate the broader impact of fairness in automation. As industries increasingly rely on AI-driven decision-making, the balance between efficiency and equity becomes critical. This research challenges the assumption that robotic warehouses should optimize for speed alone and advocates for a future where fairness plays a central role in automated commerce.
YUAN Zhe - EMLV |
- Recherche
- Logistique et Supply Chain, Transformation Digitale