We experimentally investigate whether and how the potential presence of algorithmic trading (AT) in human-only asset markets can influence humans’ price forecasts, trading activities and price dynamics. Two trading strategies commonly employed by high-frequency traders, spoofing (SP) – associated with market manipulation – and market making (MM) – seen as liquidity provision – are considered. These experiments reveal that, first, the mere expectation of SP traders can, at first, impair price convergence towards fundamentals. Second, the expected presence of AT, especially MM traders, induce larger initial price forecasts deviations from fundamentals. Third, despite the absence of AT in our experiments, the information about the presence of AT, employing MM strategy, is sufficient to alter subjects trading behavior over time and the impact of past realized prices on subjects’ order prices.

02:52
Cette thèse propose des solutions innovantes pour répondre aux défis posés par l’utilisation de l’intelligence artificielle (IA) durant le processus d''évaluation de la solvabilité d'un emprunteur. Le premier chapitre introduit un cadre d’analyse permettant de détecter et de corriger les biais de discriminations potentielles des algorithmes d’IA, tout en maintenant leur niveau de performance. Le deuxième chapitre propose une méthodologie permettant de comprendre pourquoi un algorithme est en capacité, ou non, de distinguer un individu solvable d’un individu non solvable. Le dernier chapitre introduit une nouvelle mesure d’homogéneité des classes de risque dans les systèmes de notation interne des banques pour le risque de crédit.
SAURIN Sébastien - FNEGE |
- Recherche
- Management Stratégique