Cette vidéo présente les résultats d’une étude sur l’intégration de l’intelligence artificielle (IA) dans l’industrie automobile, axée sur les grands acteurs historiques du secteur. L’étude révèle que l’IA est principalement utilisée pour des améliorations incrémentales, telles que l’automatisation de tâches, plutôt que pour des innovations de rupture. Cette « exploitation » optimise les processus existants sans transformation radicale. L’approche organisationnelle est également surprenante : au lieu d’une stratégie « top-down » dirigée par des data scientists, l’IA est intégrée de manière « bottom-up », par les ingénieurs qui l’appliquent dans leurs expertises en fin de processus de développement. Cela montre que l’IA peut être un levier d’optimisation et de créativité lorsqu’elle est utilisée de façon progressive et distribuée. Cette méthode pourrait aussi s’appliquer à d’autres technologies émergentes dans différents secteurs.
- 00:04:02
Malgré les performances avérées des méthodes modernes d’intelligence artificielles, peu de travaux s’intéressent aux impacts environnementaux liés à la quantité de ressources nécessaires à l’entrainement et à l’usage de ces modèles. Ceci est très alarmant, lorsqu’on sait que le réchauffement climatique est une menace majeure qui met en péril notre planète et nos sociétés. Ainsi, nous abordons globalement dans ce travail la question de la mesure de l’empreinte carbone des modèles d’intelligence artificielle. Plus précisément nous considérons le cas des modèles visant à réduire les émissions de CO2. Pour de tels modèles, nous proposons de mesurer leurs impacts négatifs (quantité CO2 émise par l’entrainement et l’usage des modèles), et leurs impacts positifs (quantité de CO2 non émise du fait de l’usage des modèles). Les évaluations réalisées démontrent que l’empreinte carbone générée par l’entrainement et l’usage des modèles d’intelligence artificielle est globalement non-négligeable. Ainsi, les nouvelles métriques que nous proposons peuvent permettre d’évaluer et de comparer l’impact environnemental de ces modèles, au-delà des métriques usuelles d’évaluation des performances prédictives.
TCHUENTE Dieudonné - TBS Education |
- Recherche
- Développement Durable et RSE, Management et Big Data, Systèmes d'information